A New Norditerpene from Miliusa balansae Finet et Gagnep

Rui $\mathrm{WU}^{2,3}$, Qi YE^{1}, Neng Yu CHEN ${ }^{2}$, Guo Lin ZHANG $^{1 *}$
${ }^{1}$ Chengdu Institute of Biology, the Chinese Academy of Sciences, Chengdu 610041
${ }^{2}$ Department of Chemistry and Chemical Industry, Lanzhou University, Lanzhou 730000
${ }^{3}$ Technical Centre, Hua Sheng Group Co., Ltd, Chengdu 610075

Abstract

A novel norditerpene, miliusate (1), was isolated from Miliusa balansae Finet et Gagnep. Its structure was elucidated by spectral analysis.

Keywords: Miliusa balansae Finet et Gagnep., miliusate.

The plant Miliusa balansae Finet et Gagnep. is used in Chinese folk medicine for different symptom such as gastropathy and glomerulonephropathy. There is no report about its chemical investigation. In this study a new norditerpene with novel skeleton, named miliusate (1) was isolated, and its structure was established by spectral evidence.

Compound 1 was obtained as white flaky crystal, $\mathrm{mp} 89-91^{\circ} \mathrm{C}$; Its molecular formula $\mathrm{C}_{20} \mathrm{H}_{26} \mathrm{O}_{5}$ was provided by quasi-molecular ion $[\mathrm{M}+\mathrm{H}]^{+}$at $\mathrm{m} / \mathrm{z} 347.17970$ (calcd. 347.18585) in HRFAB-MS spectrum. The IR spectrum revealed γ-lactone ($1779 \mathrm{~cm}^{-1}$), acetoxyl ($1749,1031 \mathrm{~cm}^{-1}$) and ketone carbonyl $\left(1675 \mathrm{~cm}^{-1}\right)$ groups. The fragment ions at $m / z 303\left[\mathrm{M}-\mathrm{CH}_{3} \mathrm{CO}\right]^{+}$and $287\left[\mathrm{M}-\mathrm{CH}_{3} \mathrm{COO}\right]^{+}$in the EI-MS spectrum, ${ }^{13} \mathrm{C}$ NMR signals at 170.4 (-COO-) and $21.0,{ }^{1} \mathrm{H}$ NMR signal at $\delta 2.12$ (s, 3H) suggested the presence of $\mathrm{CH}_{3} \mathrm{COO}-$. The resonances at $\delta_{\mathrm{H}} 6.04 \mathrm{dd}(\mathrm{H}-7), 6.97 \mathrm{dd}(\mathrm{H}-8)$, and at δ_{C} 197.1 (s, C-6), 130.6 (d, C-7) and 147.5 (d, C-8) provided an α, β-unsaturated ketone. Three other methyl groups appearing at $\delta_{\mathrm{H}} 1.65\left(\mathrm{~s}, 3 \mathrm{H}, 7^{\prime}-\mathrm{H}\right), 1.59\left(\mathrm{~s}, 3 \mathrm{H}, 6^{\prime}-\mathrm{Me}\right)$ and 1.77 (d, 3H, 2'-Me) were recognized.

From HMQC and HMBC correlation, two substructures in the molecular could be concluded (A and B in Figure 1). The double bond between C-1' and C-2' was determined as trans, because 2^{\prime}-Me resonates at $\delta_{\mathrm{C}} 16.9$ instead of $\delta_{\mathrm{C}} 23$ for those cis analogues ${ }^{1}$. The HMBC correlation between C-6 (at $\delta_{\mathrm{C}} 197.1$) and H-4 [at $\delta_{\mathrm{H}} 3.02$ (d), $2.65(\mathrm{~d}), \mathrm{J}=17.2 \mathrm{~Hz}], \mathrm{C}-6$ and $\mathrm{H}-10$ [at $\delta_{\mathrm{H}} 2.51(\mathrm{dd}), 2.25(\mathrm{dd})$] suggested C-6 carbon is adjacent to a quarternary carbon (C-5). The following correlation supported the spiro rings of $\mathrm{C}-1$ to $\mathrm{C}-10$: $\mathrm{H}-1 / \mathrm{C}-3, \mathrm{C}-4, \mathrm{C}-5, \mathrm{C}-6$ and $\mathrm{C}-10, \mathrm{H}-7 / \mathrm{C}-8$ and $\mathrm{C}-9, \mathrm{H}-8 / \mathrm{C}-6$ and $\mathrm{C}-10, \mathrm{H}-9 / \mathrm{C}-1, \mathrm{C}-5, \mathrm{C}-7, \mathrm{C}-8$ and $\mathrm{C}-10$. The acetoxyl group could be located to $\mathrm{C}-9$ in view of the HMBC correlation $\delta 5.63(\mathrm{H}-9) / 174.0\left(\mathrm{CH}_{3} \underline{\mathrm{COO}}\right)$ (Table 1). Accordingly, the structure of compound $\mathbf{1}$ could be deduced as 9 -acetoxyl-1-(2,6-dimethyl-1,5 -heptadiene)-3,6-dioxo-2-oxaspiro[4.5]deca-7-ene, named miliusate. It possesses a novel skeleton.

Figure 1 Structure of $\mathbf{1}$ and HMBC Correlation

Table 1 NMR Data of Compound 1

Carbon	δ^{\prime}	$\delta_{\text {H }}$	J (Hz)	HMBC Correlation
1	82.2	5.39	d, 9.9	H-1/C-6, C-3, C-2', C-1', C-5, C-4, C-10
3	174.9	--	--	H-4/C-6, C-3, C-1, C-5, C-10
4a	38.6	3.02	d, 17.2	
b		2.65	d, 17.2	
5	53.2	--	--	
6	197.1	--	--	
7	130.6	6.04	dd, 10.2, 1.6	H-7/C-9, C-5
8	147.5	6.97	dd, 10.2, 3.2	H-8/C-6, C-10
9	66.6	5.63	m	$\mathrm{H}-9 / \mathrm{CH}_{3} \mathrm{COO}, \mathrm{C}-8, \mathrm{C}-7, \mathrm{C}-1, \mathrm{C}-5, \mathrm{C}-10$
10a	36.8	2.51	dd, 13.9, 5.4	H-10/C-6, C-8, C-1, C-9, C-5, C-4
b		2.25	dd, 13.9, 6.7	
1'	119.8	5.25	dd, 9.9, 1.1	$\mathrm{H}-1$ '/C-1, C-5, C-3', $\mathrm{C}_{2}{ }^{\prime}-\underline{\mathrm{C}}_{3}$
2^{\prime}	144.7	--	--	
3'	40.3	2.06	m	H-3'/C-2', C-5', C-1', C-4', $\mathrm{C}_{2}{ }^{\prime}-\mathrm{CH}_{3}$
4'	26.7	2.09	m	H-4'/C-6', C-5', C-3', C-2'
5'	124.4	5.03	m	H-5'C-6', C-3', C-4', C-7', $\mathrm{C}_{6}{ }^{\prime}-\mathrm{CH}_{3}$
6	132.3	--	--	
$7{ }^{\prime}$	25.9	1.65	S	H-7'/C-6', C-5', C_{6} - CH_{3}
C_{2} - CH_{3}	16.9	1.77	d, 1.3	2'- $\mathrm{CH}_{3} / \mathrm{C}-2$ ', C-1', C-3'
$\mathrm{C}_{6}-\mathrm{CH}_{3}$	17.8	1.59	S	6'- $\mathrm{CH}_{3} / \mathrm{C}-6$ ', C-5', C-7'
$\mathrm{CO}-\mathrm{CH}_{3}$	21.0	2.12	S	
$\mathrm{CH}_{3} \underline{\mathrm{CO}}$	170.4	--	--	

*The assignment were based on HMQC diagram.

Acknowledgment

Di-Ao Science Foundation supported this work.

Reference

1. Y. H. Gong, ${ }^{13}$ C NMR Nuclear Magnetic Resonance, First Edition, Science Publishing of Yunnan, Kunming, 1986, 55

Received 21 July, 2000

